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An integrative approach unveils FOSL1 as an
oncogene vulnerability in KRAS-driven lung
and pancreatic cancer
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KRAS mutated tumours represent a large fraction of human cancers, but the vast majority

remains refractory to current clinical therapies. Thus, a deeper understanding of the

molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic

strategies. Here we report the identification of a common transcriptional signature across

mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1.

High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with

the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both

KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components

of the mitotic machinery, a pathway previously postulated to function orthogonally to

oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant

KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect

on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide

opportunities to treat KRAS-driven cancers.
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KRAS is frequently mutated in human cancers1 and is a
driver of neoplasias in the lung, pancreas, colon
and biliary tract2–5, where tumour maintenance is

highly dependent on continued oncogenic KRAS expression6,7.
Unfortunately, recent approaches to inhibit KRAS directly still
lack long-term inhibition capacity and show toxicity in vivo8.
Thus alternative strategies to neutralize KRAS-mediated effects
are urgently needed. Design of such strategies would be facilitated
by a deeper understanding of the molecular alterations
downstream of oncogenic KRAS.

Gene-expression profiling provides a tractable strategy to
expose novel components of the oncogenic KRAS network. KRAS
signatures from single experimental systems or tumour types that
classify patients according to KRAS genotype9,10 and KRAS
dependency11 have been described, but show little overlap10. This
suggests that the transcriptional response is highly dependent on
the tissue of origin and raises the question whether a core of genes
relevant for mutant KRAS biology is preserved across different
tumour types. Integration of multiple laboratory and clinical
gene-expression data from different tissues spanning mouse and
human species would address this question but has yet not been
described.

A plethora of transcription factors have been linked to
transformation by KRAS oncogene in vitro, including the AP1
transcription complex12–14. Conversely, little evidence exists
for a critical activity of AP1 or other transcription factors in
KRAS-driven tumorigenesis. In this regard, loss of WT1, FOXM1
or MYC has been reported to impair initiation of mutant Kras
lung or pancreatic tumours in mice15–18. Nonetheless, given the
complexity of the transcriptional regulatory network elicited by
KRAS oncogene, it is likely that other transcription factors could
play a role in KRAS-driven tumorigenesis and represent novel
vulnerabilities.

Human tumours expressing KRAS oncogene undergo mitotic
stress19 and, thus, are highly dependent on the mitotic machinery
to preserve cellular homeostasis. In this cellular context, various
components of the mitotic machinery have been unveiled as
KRAS vulnerabilities in human cancer20,21. However, whether
KRAS oncogene intersects with the mitosis network influencing
the cellular adaptation to mitotic stress is largely unknown.
Therefore, the mitotic machinery has been postulated to operate
orthogonally to mutant KRAS signalling20,22.

In this study, we devised an integrative strategy to expose
common core elements of KRAS signalling critical for home-
ostasis of KRAS mutated tumours by combining (1) a cross-
tumours gene-expression screen to identify KRAS-dependent
candidate genes, and (2) patient outcome to inform selection of
candidate genes for functional follow-up. This strategy unveiled
FOSL1 as a prominent component of oncogenic KRAS-driven
lung and pancreatic ductal adenocarcinoma (PDAC), which
partially functions by transcriptionally regulating a subset of
genes involved in mitotic fitness that unveils opportunities for
pharmacological intervention.

Results
Identification of candidate genes by a cross-tumours screen. To
uncover a core of genes consistently regulated by KRAS across
mouse and human tumours, we followed a two-tiered approach.
First, we screened gene-expression data from in vitro and in vivo
experimental systems of epithelial and mesenchymal origin with
either wild-type or mutant KRAS allele (human immortalized
bronchoepithelial cells, KrasLSLG12D/þ mouse embryo fibroblasts
and a mouse model of Kras-driven lung cancer). Only 19 genes
were consistently overexpressed in mutant KRAS phenotype in at
least two of the three studies (Fig. 1a, Supplementary Fig. 1a and
Supplementary Table 1), indicating that the transcriptional

response to oncogenic KRAS is markedly influenced by the
background of each experimental system. Also, only three
genes (DUSP6, GLRX and PHLDA1) overlapped with a previous
cross-species KRAS signature23, underscoring the validity of our
approach to uncover novel KRAS-regulated genes.

Next, Gene Set Enrichment Analysis (GSEA) of publicly
available data from mouse and human tumours was performed to
investigate the relevance of the 19 candidate genes in cancer
(Fig. 1a). A negative (� ) enrichment was observed in mouse
lung adenocarcinoma (LAC) and PDAC where mutant KRAS
expression was depleted2,7 (Supplementary Fig. 1b,c). In human
cancer, a positive (þ ) enrichment was observed in mutant KRAS
patients compared to wild-type in LAC (n¼ 3), PDAC, colorectal
cancer (CRC), cholangiocarcinoma (CCA) and multiple myeloma
(MM) (Supplementary Fig. 1d–j). These observations were
recapitulated in human LAC and CRC cell lines from the
Cancer Cell Line Encyclopedia24 (Supplementary Fig. 1k,l,
and Supplementary Table 2). The results suggest that the 19
genes are regulated through a cell-autonomous mechanism and
are representative of KRAS-driven cancers independently of the
tissue origin.

A cross-tumours signature predicts KRAS status and survival.
To refine the value of the identified KRAS-regulated genes to
human cancer, those genes recurrently present in 450% of the
leading edges of the mouse and human cancer GSEA were
identified (Supplementary Table 2). This analysis across different
KRAS-driven tumours unveiled a core of eight genes including
AREG, DUSP4, DUSP6, FOSL1, LAMB3, LAMC2, PHLDA1 and
SPRY4. Notably, LAMB3 has been reported as a synthetic lethal
interaction with oncogenic KRAS in colon cancer21, suggesting
that other co-identified genes could also display a functional role
in mutant KRAS cancer.

Next, we interrogated independent data sets of KRAS-driven
cancers to determine whether the eight-gene signature would be a
predictor for KRAS status. A higher geometric mean was
representative of LAC (n¼ 3), PDAC and CCA tumours
harbouring KRAS mutations (Fig. 1b–d and Supplementary
Fig. 1m). The results correlated with a statistically significant
area under receiver operating characteristic (AUC)
(Supplementary Fig. 1n). Since KRAS mutations are mutually
exclusive with other dominant oncogenic drivers in LAC, we
reasoned that the cross-tumours eight-gene signature would be
exclusive of the KRAS phenotype. The geometric mean of the
eight genes did not discriminate mutant EGFR from wild-type
patients in four data sets (Supplementary Fig. 1o). Similar results
were observed for AML4-ALK, BRAF and DDR2 mutant or MYC
amplified tumours in The Cancer Genome Atlas (TCGA) data set
(Supplementary Fig. 1p).

We then sought to investigate the role of the eight-gene
signature in patient survival using the TCGA LAC data set that is
large enough to stratify patients based on KRAS status. Mutant
KRAS patients expressing high levels of the eight-gene signature
had the worst outcome (Fig. 1e) with a significant decreased
survival compared to wild-type patients (P¼ 0.04, log-rank test,
Mantel Cox). Moreover, multivariate analysis of mutant KRAS
patients expressing high levels of the eight-gene signature showed
that the effect of gene expression on patient survival is
irrespective of stage, age and gender (P¼ 0.003, HR¼ 1.599
(1.177–2.172), Cox proportional hazards model), conversely to
what was found in wild-type KRAS patients (P¼ 0.883,
HR¼ 1.024 (0.748–1.402), Cox proportional hazards model).
The eight-gene signature was also associated with poor survival in
PDAC patients25 (Fig. 1f), whereas no association with patient
survival was observed in other tumours where KRAS mutations
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are rarely found or absent such as squamous cell lung carcinoma
or breast cancer (Supplementary Fig. 1q,r). These results argue
that high expression of the eight-gene signature is representative
of mutant KRAS cancers.

FOSL1 upregulation in KRAS-driven human LAC. To further
delineate the contribution of the eight candidate genes, we carried
out single gene survival analysis to discriminate those genes

involved in the clinical outcome of mutant KRAS LAC patients.
We focused on LAC where patients can be stratified based on
KRAS genotype. Only high FOSL1 expression identified a group
of patients bearing KRAS mutations with the worst survival
outcome and the differences between wild-type and mutant KRAS
patients expressing high FOSL1 levels were statistically significant
(P¼ 0.016, log-rank test, Mantel Cox) (Fig. 2a). Multivariate
analysis including stage, age and sex showed that FOSL1
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Figure 1 | Identification of cross-tumours KRAS-dependent genes. (a) Workflow of the gene-expression strategy for the identification of mutant

KRAS-regulated genes. (Left) Venn’s diagram summarizing the cross-species meta-analysis. In white are genes over-expressed in mutant KRAS cells or

tumours over wild-type KRAS controls (n¼ 19). Blue: Human lung immortalized bronchoepithelial cells (AALE cells) expressing exogenous KRASG12D

compared to wild-type KRAS-expressing cells. Orange: KrasLA2 mouse LAC tumours compared to normal lung tissue. Red: Kras-activated mouse embryo

fibroblasts compared to wild-type Kras mouse embryo fibroblasts. (Center) GSEA graphs showing the number of mouse and human cancer data sets used

to query the relevance of the initial 19 candidate genes identified. (Right) An eight-gene cross-tumours KRAS signature including genes recurrently found in

more than 50% of the GSEA leading edges. (b–d) Box plots of classification analyses based on the expression of the eight-gene cross-tumours signature in

LAC, PDAC and CCA data sets. P values obtained using Student’s t-test. (e) Kaplan–Meier plot of LAC patients for the expression of the eight-gene

cross-tumours signature taking into account KRAS status. Wild-type group excluded patients with genetic alterations in non-KRAS oncogene drivers to

prevent any bias in survival due to administration of targeted therapies. P values obtained using the log-rank test (Mantel Cox). (f) Kaplan–Meier plot of

PDAC patients for the expression of the eight-gene cross-tumours signature. P values obtained using the log-rank test (Mantel-Cox). *Po0.05.
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expression was an independent survival marker in LAC patients
with KRAS mutations (P¼ 0.006; HR¼ 5.072 (1.61–15.98), Cox
proportional hazards model). No association was observed
between FOSL1 expression and survival of squamous lung
carcinoma or breast cancer patients (Supplementary Fig. 2a,b).
These results suggest that FOSL1 expression is preferentially
associated with KRAS mutations.

FOSL1 (also known as FOS-related antigen 1, FRA-1) is a
transcription factor that heterodimerizes with members of the
JUN family to form the AP1 transcription complex26, which is
upregulated during KRAS-induced transformation of murine
fibroblasts in vitro27,28. However, its role in human KRAS-driven
cancer remains unclear. To investigate FOSL1 in human LAC,
a panel of cell lines with known RAS status was utilized. FOSL1
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Figure 2 | Upregulation of FOSL1 in LAC. (a) Kaplan–Meier plot of the LAC TCGA data set for FOSL1 expression based on KRAS status. Wild-type group

excluded patients with genetic alterations in non-KRAS oncogene drivers to prevent outcome bias due to patients treated with targeted therapies. P values

obtained using the log-rank test (Mantel-Cox). *Po0.05. (b) mRNA and protein analyses by qPCR and western blot, respectively, for indicated genes and

proteins in a panel of mutant (n¼ 7) and wild-type (n¼ 7) KRAS cell lines. mRNA levels were compared by Student’s t-test. (c) Western blot analysis for

members of the FOS and JUN families. (d) Western blot showing FOSL1 expression levels after KRAS inhibition with a specific shRNA in mutant KRAS

cells (H2009 and H358). (e) Western blot to detect FOSL1 protein expression upon KRAS expression in wild-type KRAS cells (H1568). (f) Western blot

of H2009 cells treated with U0126 (MEKi, 10mM), BIX02189 (MEK5i, 10 mM), SB203580 (JNKi, 20mM), LY294002 (AKTi, 10 mM) and SB203580

(p38i, 20mM) and probed with indicated antibodies. (g) Expression of FOSL1 by immunohistochemistry in KrasLSLG12D, p53f/f mice (n¼ 5; a: normal

alveolar epithelium; b: normal bronchiolar epithelium; c,d: adenoma; e: adenocarcinoma; f: lymph node tumour metastasis (Met)). Scale bar 50 mm.

(h) Quantification of FOSL1 staining in lung tumours of KrasLSLG12D, p53f/f(KP) mice. (i) FOSL1 protein expression in mouse LAC cells derived from KrasLA2

(LKR10, LKR13), KrasLSLG12D (LSZ1-5) and KrasLSLG12D, p53f/f (389N1, 482N1), squamous cell lung carcinoma cells (UNSCC680) and normal lung. Asterisk

indicates metastatic cell lines isolated from the lymph nodes. QPCR plots and western blot images are representative of three independent experiments

with different cell lysates. Error bars correspond to s.d.
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mRNA and protein were upregulated in mutant RAS cell lines
compared to wild type (Fig. 2b). Likewise, phosphorylation of
FOSL1, previously suggested to be a mechanism of FOSL1
activation19, was preferentially observed in mutant cells. Of note,
analysis of other AP1 members of the JUN and FOS families
revealed no obvious genotype-specific expression (Fig. 2c).
Further analysis of patient-derived xenografts revealed
upregulation of FOSL1 expression in tumours with KRAS
mutations compared to wild type (Supplementary Fig. 2c).

To explore whether FOSL1 was downstream of mutant KRAS,
KRAS inhibition was carried out in different cell lines. KRAS
knockdown lowered FOSL1 protein levels (Fig. 2d). Conversely,
FOSL1 was upregulated upon mutant KRAS overexpression in wild-
type KRAS cells (Fig. 2e). ERK1/2 has been reported as the main
KRAS effector controlling FOSL1 expression in KRAS-driven
cancer29. Pharmacological inhibition of KRAS canonical effectors
showed that, in addition to ERK1/2, ERK5 and JNK consistently
regulate FOSL1 expression in mutant KRAS cell lines (Fig. 2f and
Supplementary Fig. 2d). Thus, FOSL1 is regulated by, and integrates
signals from, different kinases downstream of KRAS.

FOSL1 overexpression in a model of LAC. To study FOSL1
expression in a more physiologically relevant system, a genetically
engineered mouse model of Kras-driven LAC, KrasLSL-G12D;
Trp53f/f (KP), that is representative of human disease was used.
Immunohistochemistry analysis was performed in normal and
tumour tissue after antibody validation (Supplementary Fig. 2e).
No FOSL1 expression was detected in normal alveolar and
bronchiolar epithelia of KP mice (Fig. 2g). Conversely, around
60% of lung tumours expressed FOSL1 to some extent (Fig. 2h).
Of note, FOSL1 expression was also found in advanced
tumour lesions such as lymph node metastases (n¼ 4) (Fig. 2g).
Interestingly, only a small fraction of cells expressing FOSL1 was
positive for Ki67 (7.25%) (Supplementary Fig. 2f), suggesting that
FOSL1 does not specifically label a population of proliferative cells.

To rule out the possibility that FOSL1 upregulation was mediated
by a non-cell autonomous mechanism, its expression was assessed
in lung cancer cell lines derived from different mouse models2,30–32.
Fosl1 expression was detected in mutant Kras LAC cell lines but not
in normal lung tissue or wild-type Kras squamous cell carcinoma
cells (Fig. 2i and Supplementary Fig. 2g). Notably, FOSL1
expression was preserved in cell lines derived from metastatic
sites32. These results indicate that FOSL1 is upregulated in an
autochtonous model of Kras-driven LAC by a cell-autonomous
mechanism and suggest that it may be important in lung
tumorigenesis, including advanced metastatic stage.

Preferential sensitivity of mutant KRAS cells to FOSL1 loss. To
test the functional relevance of FOSL1 in KRAS-driven LAC,
FOSL1 was depleted by interference RNA in mutant and wild-
type RAS cell lines (Supplementary Fig. 3a). Mutant RAS cells
were significantly more sensitive to FOSL1 inhibition than wild
type for three independent shRNAs, suggesting an on-target effect
(Fig. 3a). This result was consistent among mutant and wild-type
cell lines with similar population doubling (Fig. 3a, open circles,
and Supplementary Fig. 3b) suggesting that the sensitivity to
FOSL1 loss is specific to KRAS genotype. Moreover, the effect of
FOSL1 inhibition was extended to mutant RAS cells from
large cell carcinoma (Supplementary Fig. 3c). Likewise, FOSL1
depletion in two mouse LAC cell lines derived from a Kras-driven
mouse model led to significant decrease in cell viability
(Supplementary Fig. 3d). Next, the cellular mechanisms under-
lying the effects of FOSL1 loss were analysed using an inducible
shRNA that compromised proliferation of mutant KRAS cells
in vitro as seen for the same constitutive shRNA (Supplementary

Fig. 3e,f). FOSL1 loss led to shortened S-phase, increased G2
phase and induction of apoptosis (Fig. 3b,c).

Then, we asked whether FOSL1 would be required for LAC
tumorigenesis. Injection of human mutant KRAS cells infected
with the inducible FOSL1 shRNA into immunodeficient mice
treated with doxycycline yielded tumours of significant smaller
volume than control cells (Fig. 3d and Supplementary Fig. 3g).
These differences were due to a significant decrease in the
number of proliferating cells and an increase in apoptotic cells in
concordance with reduced FOSL1 expression (Supplementary
Fig. 3i–k). Conversely, average tumour volume of KRAS
wild-type cells with FOSL1 inhibition did not change compared
to the control group (Fig. 3d and Supplementary Fig. 3h).
Likewise, FOSL1 depletion in mouse Kras-driven lung cancer cells
decreased tumour volume (Fig. 3e and Supplementary Fig. 3l).

To investigate whether FOSL1 was also important in tumour
maintenance, mutant KRAS cells were engrafted and grown
until average tumour diameter reached 80–100mm3 prior to
doxycycline administration. FOSL1 inhibition significantly
decreased tumour fold change compared to control shRNA
(Fig. 3f and Supplementary Fig. 3m). These changes correlated
with less Ki67 and more cleaved-caspase 3 positive cells in
FOSL1-depleted tumours (Fig. 3g–i). All in all, these data show
that FOSL1 plays a role in KRAS-driven tumorigenesis.

FOSL1 is required for mouse lung tumorigenesis. To investigate
the role of FOSL1 in a model of LAC initiation by oncogenic Kras,
KrasLSL-G12D/þ ; Trp53f/f; Fosl1þ /þ (KP) and KrasLSL-G12D/þ ;
Trp53f/f; Fosl1f/f (KPF) mice (Supplementary Fig. 4a) were
intratracheally administered with adenoviral Cre (AdCre).
A decrease in tumour burden was observed in KPF mice com-
pared to KP control mice by microcomputed tomography and
histology after 12 weeks of AdCre administration (Fig. 4a,b).
Histological analysis revealed a significant decrease of tumour
area in KPF compared to KP mice (Fig. 4c), despite the presence
of large KPF tumours with incomplete recombination of Fosl1
floxed alleles (Supplementary Fig. 4b). Analysis of total tumour
number in KP vs KPF mice showed a significant decrease in the
number of tumours initiated in lung epithelial cells depleted of
Fosl1 (Fig. 4d). Likewise, analysis of tumour size revealed that
tumours in KPF mice were significantly smaller compared to KP
(Fig. 4e). In this regard, binning of the total number of tumours
into quartiles by size revealed that median differences at each
quartile were statistically significant between the two groups
(Supplementary Fig. 4c). Lastly, Fosl1 ablation in KPF mice
prolonged overall survival compared to control mice (Fig. 4f).
These results suggest that Fosl1 functions in initiation and
progression of mutant Kras tumours and demonstrate an
important role of FOSL1 in Kras-driven LAC oncogenesis in vivo.

FOSL1 plays a relevant role in pancreatic adenocarcinoma.
The identification of FOSL1 through a cross-tumours approach
including LAC, PDAC, CRC, CCA and MM suggested that
it could be relevant in other KRAS-driven tumours. Thus, we
investigated if FOSL1 played a role in PDAC where KRAS stands
as a prominently mutated oncogene. A significant upregulation of
FOSL1 mRNA in pancreatic cancer tissue compared to normal
was observed by meta-analysis (Fig. 5a). These findings were
recapitulated at the protein level in human and mouse PDAC cell
lines (Supplementary Fig. 5a,b). To rule out the possibility that
FOSL1 was regulated through KRAS-independent mechanisms in
PDAC cells, KRAS expression was inhibited and decreased
FOSL1 expression was observed (Supplementary Fig. 5c).

To extend these findings to the clinical setting, FOSL1
expression was assessed in PDAC patients (n¼ 72)
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(Supplementary Table 3). Antibody specificity was validated in
human cancer cells using FOSL1 shRNAs (Supplementary
Fig. 5d). No expression was observed in normal pancreas
tissue, whereas FOSL1 positive cells were detected in
pancreatic intraepithelial neoplasias through PDAC (Fig. 5b and
Supplementary Fig. 5e). Similar results were observed in a mouse
model of PDAC (p48þ /Cre; KrasLSLG12D, trp53flox/flox (KPC))

(Fig. 5c and Supplementary Fig. 5e). More importantly, high
FOSL1 protein expression was a marker of poor patient survival
(P¼ 0.002, log-rank test, Mantel-Cox) (Fig. 5d). These results
were recapitulated in an independent PDAC cohort at the mRNA
level (P¼ 0.048, log-rank test, Mantel Cox) (Supplementary
Fig. 5f). Overall, these findings highlight a strong clinical role for
FOSL1 in human PDAC.
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To investigate FOSL1 functional role in PDAC, we focused on
two different stages of oncogenesis. First, we explored FOSL1
function in the transdifferentiation of mouse acinar cells into duct-
like cells (acinar-to-ductal metaplasia, ADM) upon mutant Kras
expression33. We observed FOSL1 upregulation in ADM of sections
from KPC mice (Fig. 5e) and in a mouse ex-vivo ADM assay of
KrasLSLG12D acini34 (Fig. 5f). In the later, Fosl1 upregulation was
accompanied by upregulation of the ductal marker Ck19
(Supplementary Fig. 5g). Subsequent Fosl1 knockdown studies
revealed FOSL1 requirement for efficient duct formation of acinar
cells upon Kras activation (Fig. 5g and Supplementary Fig. 5g).
Lastly, Fosl1 overexpression was sufficient to promote ADM, albeit
at lower levels than Kras activation (Fig. 5h,i and Supplementary
Fig. 5h). These observations suggest that FOSL1 plays a role in the
development of PDAC.

Second, we studied whether FOSL1 is a gene required for
PDAC. Inhibition of FOSL1 expression in two KRAS-dependent
PDAC cell lines showed a significant decrease in cell viability
(Fig. 5j,k), suggesting that FOSL1 is important in homeostasis of
PDAC cells. Collectively, these observations underline a relevant
role of FOSL1 in different stages of PDAC oncogenesis.

FOSL1 regulates a gene signature that predicts poor survival.
To explore the molecular mechanisms elicited by FOSL1,
transcriptomic profiling was performed on mutant KRAS
LAC cells. Forty-five genes were downregulated upon FOSL1
inhibition (FCo0.5 and B40) (Supplementary Fig. 6a). This list
included genes or pathways whose inhibition had been shown
to impair Kras-driven tumorigenesis such as Hexokinase 2
(ref. 35), FOXM1 (ref. 16) or PI3K/mTOR36. To investigate if the
FOSL1 signature (FOSL1 sig) was representative of mutant KRAS
tumours, GSEA was carried out in LAC and PDAC showing a
significant enrichment in mutant KRAS tumours across several
human and mouse data sets (Fig. 6a,b and Supplementary
Fig. 6b,c). Interestingly, high expression of the FOSL1 sig was

found in LAC patients harbouring KRAS mutations, and was
associated with the poorest survival outcome (Fig. 6c). This result
was recapitulated in a PDAC patient cohort25 (Fig. 6d).

Given FOSL1’s strong clinical role, we explored the biological
processes associated with the FOSL1 sig. The top biological
processes identified by gene ontology (GO) with a significant
enrichment in FOSL1 genes were microtubule-based process,
mitotic cell cycle, regulation of response to stress, negative
regulation of biological process and cell cycle phase
(Supplementary Fig. 6d). We found a decrease in mRNA of
genes involved in mitosis-related processes such as AURKA,
CCNB1, FOXM1, and the AURKA targets HURP and TACC3
(refs 37–40) (Supplementary Fig. 6e). Of note, protein expression
of AURKA, CCNB1, HURP and TACC3 was decreased upon
FOSL1 inhibition in an independent mutant KRAS LAC cell line
but not in wild-type cells with similar proliferation rate in vitro
and in vivo (Fig. 6e). Additionally, the AURKA target PLK1,
previously identified as a synthetic lethal interaction with
KRAS38, was also diminished upon FOSL1 inhibition in a
genotype-specific manner (Fig. 6e). Downregulation of mitotic
proteins was also observed in PDAC cells at the mRNA and
protein level (Supplementary Fig. 6f,g). These results strongly
suggest that KRAS oncogene intersects with the mitosis
machinery through FOSL1 in human cancer.

The above results suggested that the phenotype originated by
FOSL1 loss involves components of the mitotic machinery.
A central event in mitosis is the phosphorylation of histone H3
(HH3) by AURKA40. Using taxol, which interferes with mitotic
spindle function and blocks cells in mitosis, we found that FOSL1
inhibition led to decreased phospho-HH3 levels in mutant
KRAS LAC cells compared to control cells, in concordance with
decreased expression of mitotic genes (Supplementary Fig. 6h,i).
These findings argue that the phenotype observed in FOSL1-
silenced cells may involve the regulation of components of the
mitotic machinery.
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AURKA depletion recapitulates FOSL1 loss phenotype. Mutant
KRAS tumours undergo a high degree of mitotic stress and, thus,
genes contributing to this phenotype may represent cancer
vulnerabilities20. We focused on AURKA, for which pharmaco-
logical inhibitors are currently being investigated in clinical trials.

AURKA knockdown led to a profound protein decrease of the
mitotic genes CCNB1, HURP and PLK1, while only a partial
reduction of TACC3 and FOXM1 was observed (Fig. 6f). At the
functional level, AURKA inhibition induced a decrease in the
relative number of mutant KRAS cells compared to wild type
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(Fig. 6g). However, AURKA overexpression did not rescue the
FOSL1-knockdown proliferative phenotype of mutant KRAS cells
(Supplementary Fig. 6j). In this regard, we observed that AURKA
overexpression was unable to recover the expression of TACC3 in
the rescue experiment (Supplementary Fig. 6k). In light of these
results and given that TACC3 is a potent AURKA coactivator41

that is only partially regulated by this mitotic kinase, we reasoned
that if TACC3 is required for AURKA activity in KRAS-driven
tumours its depletion would recapitulate the AURKA-inhibition
phenotype. Notably, TACC3 inhibition was also preferentially
detrimental to proliferation of mutant KRAS LAC cells (Fig. 6h
and Supplementary Fig. 6l).

Next, survival analyses were carried out in two independent
LAC and PDAC patient cohorts. We observed that high levels of
AURKA were a marker of poor prognosis in both tumour types
(Supplementary Fig. 6m), highlighting a clinical role for this
kinase in KRAS-driven tumours.

Based on the AURKA knockdown results and the fact that its
upstream regulator FOSL1 can be regulated by different KRAS
effectors, including the MEK-ERK pathway, we posited that
combined inactivation of AURKA and MEK would be more
deleterious to mutant KRAS cells than single protein inactivation.
Pharmacological inhibition of AURKA (alisertib) and MEK1/2
(trametinib) was carried out in mutant and wild-type LAC cell
lines using drug concentrations equal or lower than the GI25 by
MTS analysis (500 nM and 1,000 nM), which achieved complete
protein inactivation after a 3-day treatment (Supplementary
Fig. 6n,o). Analysis of the dual inhibition revealed a synergistic
effect in three out of four mutant KRAS cell lines for all possible
drug combinations, while no synergy was observed in wild-type
KRAS cell lines (Fig. 6i and Supplementary Fig. 6p). The
synergistic effect correlated with a significantly higher induction
of active caspase 3/7 positive cells in the inhibitor combination
compared to single treatments (Fig. 6j).

The in vitro results prompted us to test the effect of alisertib
and trametinib combination in vivo. Mutant KRAS tumours were
treated for 14 days (H2009) or until control tumours reached the
largest volume allowed under the ethical protocol (11 days,
H1792). Alisertib or trametinib induced significant reduction of
tumour volume in the two xenograft models. However,
concomitant treatment induced a more significant reduction
than each single drug (Fig. 6k,l). Of note, the drug combination
led to regression of 15 out of 16 tumours in the two models while
alisertib and trametinib alone to one and five tumours,
respectively (Fig. 6m,n). Furthermore, the different treatments
had no impact on mice weight (Supplementary Fig. 6q).
Collectively, these results support a functional role of the FOSL1
target AURKA in KRAS-driven tumours and unveil the dual

inhibition of AURKA and MEK activation as a potential strategy
to treat tumours with KRAS mutations.

Discussion
We described an integrative gene expression-based screen to
unveil KRAS dependencies. Our approach followed a two-tiered
‘zoom-in’ strategy to first identify KRAS-regulated candidate
genes by a cross-species meta-analysis of laboratory data and,
second, to select genes frequently upregulated across human
KRAS-driven cancers by querying the 19 KRAS candidate genes
against a panel of five different tumour types. Selection within the
KRAS eight-gene cross-tumours signature of the candidate gene
FOSL1 for follow-up studies relied on the incorporation of patient
outcome information. The fact that loss-of-function experiments
demonstrated that FOSL1 is important in mutant KRAS LAC
argues that the overall approach integrating gene-expression and
survival data is successful to identify genes with a relevant role in
KRAS-driven cancer. Moreover, the survival and genetic data
were recapitulated in PDAC, what supports the analysis across
different tumour types to unveil common KRAS targets.

Inhibition of early events in the phylogeny of a tumour could
attenuate tumour growth and relapse42. However, intratumour
heterogeneity arises as a hurdle for the identification of such
events, thus favouring tumour progression and relapse. One
potential strategy to unveil those early events relies on the study
of initial stages of tumorigenesis. In this regard, our strategy using
experimental systems that represented initial stages of KRAS-
induced cell transformation and tumour progression yielded
genes with a role in advanced disease such as FOSL1. These
results are in tune with recent findings that took advantage of a
gene expression signature derived from mouse lung hyperplasias
driven by oncogenic Kras to uncover DDR1 as a therapeutic
target in KRAS-driven LAC43.

In the process of RAS transformation, FOSL1 was originally
considered a gene involved in controlling G1/S phase transition
by upregulating CCND1 (ref. 27). However, FOSL1 inhibition
experiments later unveiled a role in the control of a motility and
invasion programme in human colon cancer cells expressing
oncogenic KRASG13D (refs 29,44) in vitro. Our study provides
evidence that, under endogenous KRAS oncogene expression,
FOSL1 can as well regulate a set of genes involved in mitosis
progression, a cellular function previously proposed to work
orthogonally to KRAS oncogene in human cancer20,22 but for
which a direct link to the KRAS oncogene network was missing.
Among the identified genes, the AURKA targets and coactivators
TACC3 and HURP had not been previously linked to the KRAS
signalling network. On the other hand, AURKA was found
upregulated in PDAC45,46 and malignant peripheral nerve sheath

Figure 6 | FOSL1 regulates a transcriptional program including genes involved in mitosis progression amenable to pharmacological inhibition.

(a,b) GSEA of human LAC (a) and PDAC (b) data sets comparing mutant KRAS patients to wild-type KRAS patients. (c) Survival analysis of LAC patients

(TCGA data set) stratified by KRAS status and expression of a FOSL1 signature. (d) Survival analysis of PDAC patients stratified by expression of a FOSL1

signature. P values obtained using the log-rank test (Mantel-Cox). (e) Western blot analysis on the indicated mitotic genes in mutant (H358) and wild-type

(H1650) KRAS LAC cells after FOSL1 inhibition by two independent shRNAs. Western blot is representative of three independent western blots with

different lysates. (f) Western blot analysis on the indicated mitotic genes in mutant KRAS LAC cells (H358) after AURKA inhibition by two independent

shRNAs. Western blot is representative of three independent western blots with different lysates. (g,h) MTS assay of wild-type (HCC78, H1437, H1650 and

H2126) and mutant KRAS (H23, H358, A539, H2009 and H2347) treated with two independent shRNAs targeting AURKA (g) or TACC3 (h). Open circles

represent cell lines with similar population doubling time. Error bars correspond to s.d. Assay is average of two independent experiments. (i) MTS analysis

of mutant and wild-type KRAS cells lines treated with alisertib (500 nM), trametinib (500 nM) or both. CI: combination index. CIo1 in bold. Results are

average of four different independent treatment experiments performed in triplicate. (j) Analysis of active caspase 3/7 cells in H2009, H1792 and H23 cells

treated with vehicle, alisertib (1 mM), trametinib (1 mM) or both for 72 h. P values obtained using Student’s t-test. (k,l) Analysis of tumour volume of mice

injected with H2009 or H1792 cell lines and orally administered vehicle, alisertib (25mg kg� 1), trametinib (1mg kg� 1) or both. Tumours were grown until

average tumour volume ranged from 80 to 100mm3 and randomized before treatment starts. Error bars correspond to s.e.m (n¼ 8 per group).

Comparisons to control group: *Po0.05; **Po0.01; ***Po0.001. Comparisons to combo group: ^^Po0.01; ^^^Po0.001. P values obtained using Student’s

t-test. (m,n) Analysis of tumour change from samples in (i,j) at the end of each experiment (n¼ 8 per group).
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sarcomas with abnormal RAS signalling47, and reported to
phosphorylate the KRAS effectors RalGDS and RalA when
ectopically expressed in mouse and human cells48,49. However,
the molecular mechanisms whereby oncogenic KRAS regulated
AURKA expression and its clinical and functional role in KRAS-
driven tumours were largely unknown. Our data also revealed that
the mitosis kinase PLK1 is regulated by FOSL1, shedding light into
the molecular mechanisms regulating this kinase in the context of
KRAS oncogene. All in all, these observations indicate that FOSL1
links KRAS oncogene to genes involved in mitotic fitness, and
suggest that AURKA and TACC3 may partially mediate the
‘synthetic sensitivity’ of mutant KRAS tumours to FOSL1 loss.

Although FOSL1 inhibition involved the regulation of mitotic
genes, sensitivity of mutant KRAS cells to FOSL1 loss seems to
occur irrespectively of the proliferative rate of tumour cells. This
is supported by the fact that both in vitro and in vivo mutant
KRAS cells showed a higher sensitivity to FOSL1 knockdown than
wild-type cell lines with similar population doubling. A possible
explanation of the ‘synthetic sensitivity’ to FOSL1 loss maybe the
heightened mitotic stress reported in mutant KRAS cells20.
Nonetheless, despite the central role of the mitotic machinery to
mutant KRAS phenotype, the contribution of other members of
the FOSL1 signature to the effect induced by FOSL1 loss remains
unexplored and may also help to explain the impact of FOSL1
inhibition in homeostasis of mutant KRAS tumours.

Our findings also argue that a better understanding of the
molecular events controlled by prominent transcriptional nodes
of the KRAS oncogene network, such as FOSL1, may expose
alternative strategies to direct inhibition of transcription factors.
We show that, at least for LAC, concomitant inhibition of the
FOSL1 target AURKA and the KRAS canonical effector MEK is
more effective than single treatments. This result provides the
rationale for novel therapeutic approaches against tumours with
KRAS mutations and adds to recently reported combinatorial
strategies for the treatment of KRAS-driven tumours involving
MEK inhibitors (MEKi)50 or inhibitors targeting central kinases
of mitotic progression, such as PLK1 (ref. 51). Clinical trials
combining alisertib and targeted therapies such as the
epidermal growth factor receptor (EGFR) inhibitor (EGFRi)
erlotinib, (NCT01471964), the pan-RAFi MLN0128
(NCT02327169), the mTORi MLN1117 (NCT02551055) and
sapanisertib (NCT02719691) are being conducted in solid
tumours, thus paving the path for combination studies with
MEKi in KRAS-driven tumours.

In summary, we developed an integrative analysis for the
identification of KRAS oncogene vulnerabilities that unveiled
opportunities for therapeutic intervention. This general approach
integrating mutation, gene-expression and survival data may be
applicable to other cancers driven by not actionable oncogenes
and/or tumour suppressors for which similar information is
available.

Methods
Reagents. shRNAs to FOSL1: sh1–TRCN0000019541, sh2–TRCN0000019543,
sh3–TRCN0000019539. FOSL1 sh1 was also cloned into a TET inducible version of
pLKO.1 vector52. shRNAs to Fosl1: sh1-TRCN0000042683, sh2-TRCN0000042686.
shRNAs to AURKA: sh1–TRCN0000000656, sh2–TRCN0000000657. shRNAs to
TACC3: sh1–TRCN0000290485, sh2–TRCN0000308273. Control shRNA to green
fluorescence protein (GFP) has been previously described15. pDONR223-AURKA
was a gift from William Hahn & David Root (Addgene plasmid # 23532).
Pharmacological inhibitors: U0126, SP600125, LY294002 and SB203850 were from
Sigma; BIX02189 was from Tocris; trametinib and alisertib were from Selleckchem.

Lentiviral infections. Lentivirus was produced by transfection into 293FT cells as
previously described15, filtered and applied directly to cells for infection at an MOI
lower than 1.

Quantitative RT-PCR (qRT-PCR) analysis. RNA analysis was carried out as
previously published15.

Western blot. Cells were scraped and lysed in buffer containing 1% NP-40,
150mM NaCl, 50mM Tris pH 7.4, 1mM EDTA, 1% glycerol, supplemented with
protease inhibitor cocktail (Roche), 25mM sodium fluoride and 1mM sodium
orthovanadate. Protein samples were resolved by SDS PAGE and transferred to
nitrocellulose membranes (BioRad) and incubated in 5% milk TBS-T for 1 h prior
to addition of primary antibody. Antibodies used were: FOSL1 (1:2,000, #5281, Cell
Signaling Technology (CST)), p-FOSL1 (1:1,000, #5841, CST), C-FOS (1:1,1000,
#2250, CST), C-JUN (1:1,000, #9165, CST), JUNB (1:1,000, #3753, CST), JUND
(1:1,000, #5000, CST), FOSB (1:1,000, #2251, CST), p-AURKA (1:1,000, #2914,
CST), p-ERK (1:1,000, #9101, CST), ERK (1:1,000, #9102, CST), FOSL1 (1:500,
sc-376148, Santa Cruz Biotechnology (SCB)), KRAS (1:500, sc-30, SCB), AURKA
(1:500, sc-56881, SCB), CCNB1 (1:500, sc-245, SCB), FOXM1 (1:500, sc-376471,
CST), HURP (1:500, sc-377004, SCB), KIF20A (1:500, sc-374508, SCB), TACC3
(1:1000, sc-376900, SCB), PLK1 (1:500, sc-17783), b-tubulin (1:2,000, sc-9104,
SCB) and FOSL2 (1:1,000, WH0002355M1, Sigma).

Uncropped scans of the most relevant blots are provided as Supplementary
Figs (7–9) in the Supplementary Information.

Immunohistochemistry (mouse and human LAC and PDAC). Tissues were
dewaxed, hydrated and incubated in a Pascal Pressure Chamber containing
Tris-EDTA (10mM/1mM), pH 9, at 95 �C for 30min. Temperature was
monitored using Pascal quality strips (S2800, Dako). Next, endogenous peroxidase
was blocked with 3% H2O2 in water for 12min. Slides were then incubated with a
primary antibody to human and mouse FOSL1 (sc-376148, SCB, human: 1:200;
mouse: 1:500) or Ki67 (1:100, RM-9106 (SP6), Thermo) at 4 �C overnight. The
reaction was developed using an anti-mouse EnVision kit (K4007, Dako) and
tissues counterstained with Harris hematoxylin. Validation of mouse antibody for
human and mouse samples was done by western blot using two independent
shRNAs against human and mouse FOSL1.

Immunohistochemistry score was blinded to researchers analysing the different
experiments (that is, sample name was coded to a random number).

Cell proliferation assay. Cell proliferation was assessed using the The CellTiter 96
AQueous Non-radioactive Cell Proliferation Assay, MTS (Promega). Experiments
were read on the indicated days according to manufacturer’s instructions. Data
were normalized to day 0 of experiment.

Population doubling time. Cells were counted at seeding, plated at a density of
400,000 cells per 60mm plate and allowed to grow to a confluence of 80–90%.
Then cells were harvested and total number was determined. Population doubling
time was calculated using the following formula: Number of hours from seeding
to harvest¼ [((logN(t)� logN(t0))/log2]. N(t) is the number of cells at time of
passage and N(t0) is the number of cells seeded at previous passage.

Cell cycle assay. Cell cycle analysis was carried out with Click-iT EdU Flow
Cytometry Assay Kit (Invitrogen). Cells were seeded and maintained in culture for
24 or 48 h. At the time points indicated, cells were incubated with 10 mM EdU
(5-ethynyl-20-deoxyuridine) for 2 h. Next, cells were harvested, washed in DPBS
containing 1% BSA and fixed in formaldehyde (Click-iT fixative) for 15min at
room temperature. Cells were washed in DPBS containing 1% BSA to remove
formaldehyde, and permeabilized in 1X Click-iT saponin-based permeabilization
and wash reagent for 15min at room temperature. Next, cells were incubated for
30min at room temperature in the dark, with the Click-iT reaction cocktail. After a
washing step with 1X Click-iT saponin-based permeabilization and wash reagent,
cells were incubated with 0.2 mgml� 1 RNase A (Sigma-Aldrich) for 1 h at room
temperature, in the dark. 7AAD was added to the tubes 10min before the
acquisition of cells in a FACSCanto II cytometer (BD Biosciences). Data were
analysed using FlowJo software v9.3.

Apoptosis assay. Basal apoptotic levels were determined with CellEvent
Caspase-3/7 Green Flow Cytometry Assay Kit (Invitrogen). After shRNA or
inhibitor treatment, cells were harvested, washed and resuspended in DPBS
containing 2% BSA. Next, cells were incubated with CellEvent Caspase-3/7 Green
Detection Reagent for 30min at 37 �C, in the dark. During the final 5min of
staining, 1mM SYTOX AADvanced dead cell stain was added to the samples. Cells
were acquired in a FACSCanto II cytometer (BD Biosciences) and data were
analysed using FlowJo software v9.3.

Phospho-histone H3 labelling. Cells were maintained in culture with no
treatment or stimulated with 0.5 mM taxol (Sigma) for 20 h. Harvested cells were
fixed and permeabilized in 70% ethanol at 4�C for 2 h. After a washing step, cells
were resuspended in PBSþ 1% BSA at 106 cellsml� 1. Cells were incubated with
phospho-histone H3 (Ser10) antibody (Cell Signaling) at 1:70 dilution for 20min,
washed and subsequently incubated with Alexa Fluor 488 fluorochrome-coupled
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secondary antibody (Invitrogen) at 20 mgml� 1 for 20min. After washing with
PBSþ 1% BSA, cells were incubated with 7AAD (BD Biosciences) for 10min.
Cells were acquired in a FACSCalibur cytometer (BD Biosciences) and data were
analysed using FlowJo software v9.3.

Mouse work. All experiments in mice were performed according to the
institutional Animal Care Committee of the University of Navarra under the
protocols CEEA/120-13 and CEEA/021-14 approved by the regional Government
of Navarra. Sample size was chosen using biomath (http://www.biomath.info/
power/ttest.htm) or based on similar experiments previously published by the
authors. For a two-sample t-test, power was estimated as follows: with a sample
size of 12 mice, significant differences of 30% can be detected with 80% power at a
0.05 significance level, assuming a standard deviation within groups of 0.25.

For xenograft experiments, 25� 103 (LKR13) or 2� 106 (H358, H2347, H1568
and H1650, H2009 and H1792) cells infected with specified shRNAs were
suspended in 200 ml of serum-free medium and injected subcutaneously into the
two lower flanks of immune-deficient 8–12-weeks-old Rag2� /� and Balb/cnu/nu

mice (for engraftment of human and mouse cells, respectively) (Charles River). For
experiments with immune-deficient mice, mice were randomized by age. One week
post-injection, tumour dimensions were measured every 3 days and tumour
volume was calculated using the formula: Volume¼ p/6� length�width2.
Investigator analysis was blinded (sample was coded to a random number).

For experiments with pharmacological inhibitors, alisertib (25mg kg� 1),
trametinib (1mg kg� 1) or dual administration was done by oral gavage daily. Mice
were randomized by tumour size to minimize tumour volume differences among
the four groups.

For mouse genetics experiments, mice were intercrossed to generate
KrasLSL-G12D/þ ; Trp53f/f; Fosl1þ /þ and KrasLSL-G12D/þ ; Trp53f/f; Fosl1f/f. Mice
were in a mixed 129/Sv and C57bl/6 background. Genotyping of mice was done on
DNA extracted from tail clippings as described previously53,54. For induction of
lung tumours, mice were intratracheally administered a dose of 1� 107 p.f.u. of
AdCre and lungs harvested 12 weeks after infection. Blind analyses were carried
out when tumour burden, tumour number or tumour size was scored in the genetic
experiment. Score of immunohistochemistry analyses was also blinded.

MicroCT scanning and histology analysis. Mice were anesthetized with 2%
isoflurane and scanned using a GE Healthcare microCT scanner. Analysis of
tumour burden, number of tumours and tumour size was carried out on H/E
stained sections of mouse lung as previously described15.

Acinar-to-ductal metaplasia (ADM) assay. ADM assays were done as previously
described18.

Drug combination studies. Mutant and wild-type KRAS cell lines were plated at
density ranging from 4,000 to 10,000 cells in 96-well plates and treated on the
following day with single drugs or both (n¼ 6 wells per condition). The combi-
nation index (CI) was obtained using the CompuSyn software (www.combosyn.
com), which takes advantage of the Chou-Talalay method for drug combination55.
This method is based on the median-effect equation, derived from the mass-action
law principle, which is the unified theory that provides the common link between
single entity and multiple entities, and first-order and higher-order dynamics. The
resulting CI offers quantitative definition for additive effect (CI¼ 1), synergism
(CIo1) and antagonism (CI41) in drug combinations. For the determination of
the CI, at least two working concentrations for each drug are required. 1 and
0.5 mM of alisertib and trametinib were used to obtain the CI for each cell line.

Cell lines. Mouse lung cancer cell lines LKR10, LKR13 (Julien Sage), LSZ1, LSZ2,
LSZ3, LSZ5 (Silve Vicent), 389N1 and 482N1 (Chen-Hua Chuang), and immor-
talized normal pancreas epithelial cells, KF07, were grown in DMEM supplemented
with 10% FBS and 1% penicillin-streptomycin. Human non-small cell lung cancer
and pancreatic cancer lines used had either wild-type RAS alleles (NCI-HCC78,
NCI-H322, NCI-H1395, NCI-H1437, NCI-H1568, NCI-H1650, NCI-H1703 and
NCI-H2126) or were mutant for RAS (NCI-H23, NCI-H358, NCI-H441, NCI-
H460, NCI-A549, NCI-H1299, NCI-H1792, NCI-H2009, NCI-H2087, NCI-H2347,
CFPac1 and HPAFII). Human cell lines were from ATCC. Human cancer cell lines
were authenticated by the Genomics Unit at CIMA using Short Tandem Repeat
profiling (AmpFLSTR Identifiler Plus PCR Amplification Kit) and grown according
to ATCC specifications. All cell lines were tested using the MycoAlert Mycoplasma
Detection Kit (LONZA). Only mycoplasma negative cells were used.

Patient-derived xenografts. Patient-derived xenografts were obtained as
previously described56.

Human patients. An informed consent from patients was obtained for all human
samples analysed in this study.

Transcriptome analysis. Samples of the experiments used for KRAS gene
signature selection (Sweet-Cordero et al.9, GSE15325 and GSE17671) were

normalized with robust multi-array average (RMA)57 and after quality assessment
and outlier detection with R/Bioconductor58, one of the mouse samples was
considered an outlier and discarded along with its corresponding control. In a
filtering process probe sets with an expression value lower than 5 in more than the
50% of the samples of all the studied conditions (KRAS_mut and KRAS_wt) were
considered as not expressed in the experiment under study. LIMMA (Linear
Models for Microarray Data)59 was used to identify the probe sets with significant
differential expression between experimental conditions. Genes were selected as
significant using a B cutoff B40. The KRAS gene set was defined as the genes with
B40 and logFC41 in at least two of the three studied experimental models.

Enrichment of the obtained gene set in human patients with mutated KRAS
(TCGA LAC, Chitale et al.60, GSE31210, GSE15471, GSE42284, GSE3225, TCGA
MML and GSE36133) or mouse models (GSE15326 and GSE32277) was analysed
with GSEA61. Public datasets used for this analysis were downloaded from Gene
Expression Omnibus (GEO) data repository (http://www.ncbi.nlm.nih.gov/geo) or
TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). TCGA
processed data for RNA-Seq experiments of LAC samples and microarray raw data
for acute myeloid leukemia samples were downloaded for the logFC calculation of
the comparison KRAS_mut vs KRAS_wt. Microarray raw data was also
downloaded from GEO, normalized with RMA57 and analysed for the logFC
calculation using R58. In the case of the identification of FOSL1 transcriptional
targets in mutant KRAS LAC cells, microarrays were normalized with RMA57.
Quality assessment, outlier detection and filtering process of probesets with an
expression value lower than 4 in more than the 50% of the samples were performed
with R57. LIMMA59 was used to identify the probe sets with significant differential
(B40). Data of microarray analysis on H2009 transduced with FOSL1 shRNA are
publicly available in GEO database with the accession number GSE76290.

Hierarchical clustering of microarray data was performed with R57 and
functional enrichment analysis of Gene Ontology categories62 was performed using
the hypergeometric distribution in R57.

Meta-analysis of PDAC data sets was done as previously described18,63.
For Kras status predictor, a machine learning algorithm based on logistic

regression64 was applied to public datasets (GSE12667, GSE16515, GSE26566,
GSE26939 and Battacharjee et al.65) in order to distinguish patients with mutated
KRAS from patients with wt KRAS with the selected eight-gene signature
summation66. The performance of each classifier was evaluated using Receiver
Operator Characteristics Curve analysis67. Both the classifiers and the
corresponding Receiver Operator Characteristics analyses were performed
using R58. The same methodology was applied to patients or cell lines with mutated
EGFR (GSE31210, Nguyen et al.68 and GSE36133) and LAC patients of the
TCGA dataset with mutations in EGFR, BRAF or DDR2, EML-ALK4 fusions,
or MYC amplification plus no KRAS mutation (https://tcga-data.nci.nih.gov/tcga/
tcgaHome2.jsp).

Survival analysis was conducted on both gene sets and individual genes using
TCGA LAC data (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp). Log-rank test
was used to calculate the statistical significance of differences observed among
Kaplan–Meier curves69. In the case of the gene sets, a summation of all the genes
for a particular sample was calculated as previously described66. Multivariate
Cox proportional hazards analysis was also performed considering the age, gender,
tumour stage and the expression of each gene set or individual gene as covariates70.
All the survival analyses were performed with R58 and P valueso0.05 were
considered statistically significant. Survival analysis on KRAS eight-gene signature
and FOSL1 47-gene signature using TCGA breast invasive carcinoma (BRCA) and
lung squamous cell carcinoma (LUSC) RNA-seq data (https://tcga-data.nci.nih.
gov/tcga/tcgaHome2.jsp) was performed as described for the TCGA LAC data.

Statistical analyses. Sample size was chosen using http://www.biomath.info/
power/ttest.htm or based on similar experiments previously published by the
authors. For comparison of two groups, samples were explored for normality
(Shapiro–Wilk test) and variance (Levene test). Groups with normal distribution
of samples followed a t-test. Non-normal samples were analysed using a
Mann–Whitney test (equal variances) or a Median test (unequal variances). All
analyses were two-tailed. Error bars correspond to either standard deviation (s.d.)
or standard error of the mean (s.e.m) as indicated for each experiment. Significant
P values in the text and graphs correspond to o0.05 (*), o0.01 (**) or o0.001
(***). Statistical analyses were done using SPSS software.

Primer sequences for qRT-PCR.
Gene Forward Reverse
FOSL1 Ggcctctgacctaccctca cttcctccgggctgatct
AURKA Gcagattttgggtggtcagt tagtccagggtgccacaga
FOXM1 Aaaacctgcagctagggatg cctgctgcctcaccatct
CCNB1 Acatggtgcactttcctcct aggtaatgttgtagagttggtgtcc
HURP Cggcgactaggtgtgagtaag ggatcccttgcgacatga
TACC3 Agagaccccgctgaggtt ccttaaacgaggaagttccaaa

Data availability. The datasets generated and/or analysed during the current study
are available through GEO or the corresponding references.

KRAS gene signature selection: GSE49200, GSE15325 and GSE17671.
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Enrichment of KRAS-dependent candidates in human patients: TCGA LAC
data set, Chitale et al.60 (http://cbio.mskcc.org/Public/lung_array_data/),
GSE31210, GSE15471, GSE42284, GSE3225, TCGA MML data set and GSE36133).

Enrichment of KRAS-dependent candidates in mouse models: GSE15326 and
GSE32277.

Data of microarray analysis on H2009 transduced with FOSL1 shRNA:
GSE76290.

Meta-analysis of PDAC data sets was done as previously described18,63.
For Kras status predictor on mut KRAS vs WT patients: GSE12667, GSE16515,

GSE26566, GSE26939 and Battacharjee et al.65.
For Kras status predictor on mut KRAS vs mut EGFR: GSE31210, Nguyen

et al.68 and GSE36133.
For Kras status predictor on mut KRAS vs mut EGFR, BRAF or DDR2,

EML-ALK4 fusions, or MYC amplification plus no KRAS mutation:
https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp.

Survival analyses: TCGA LAC, breast invasive carcinoma (BRCA) and lung
squamous cell carcinoma (LUSC) RNA-seq data (https://tcgadata.nci.nih.gov/tcga/
tcgaHome2.jsp).

Survival in the pancreatic cancer study24: https://dcc.icgc.org/repositories/
(under the identifier PACA-AU).

R codes are available upon request.
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